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in the upper half of each part of the figure is formed by selecting the appropriate
segment of the number line and joining the endpoints. Note that when the num-
bers are laid out on a circle, the twos complement of any number is horizontally
opposite that number (indicated by dashed horizontal lines). Starting at any num-
ber on the circle, we can add positive k (or subtract negative k) to that number by
moving k positions clockwise, and we can subtract positive k (or add negative k)
from that number by moving k positions counterclockwise. If an arithmetic opera-
tion results in traversal of the point where the endpoints are joined, an incorrect
answer is given (overflow).

Figure 9.6 suggests the data paths and hardware elements needed to accomplish
addition and subtraction. The central element is a binary adder, which is presented
two numbers for addition and produces a sum and an overflow indication. The binary
adder treats the two numbers as unsigned integers. (A logic implementation of an
adder is given in Appendix B.) For addition, the two numbers are presented to the
adder from two registers, designated in this case as A and B registers. The result may
be stored in one of these registers or in a third. The overflow indication is stored in a
1-bit overflow flag (0 = no overflow; 1 = overflow). For subtraction, the subtrahend
(B register) is passed through a twos complementer so that its twos complement is
presented to the adder.

Y

) =)

A
Y
S

OF = Overflow bit
SW = Switch (select addition or subtraction)

Figure 9.6 Block Diagram of Hardware for Addition and
Subtraction
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1011 Multiplicand (11)
T UX1101 Multiplier (13)
13 7 R
0000
lovll N P:rthlproducts
1011 o
16001111 ' Product (143)

Figure 9.7 Multiplication of
Unsigned Binary Integers

Multiplication

Compared with addition and subtraction, multiplication is a complex operation,
whether performed in hardware or software. A wide variety of algorithms have
been used in various computers. The purpose of this subsection is to give the read-
er some feel for the type of approach typically taken. We begin with the simpler
problem of multiplying two unsigned (nonnegative) integers, and then we look at
one of the most common techniques for multiplication of numbers in twos com-
plement representation.

Unsigned Integers Figure 9.7 illustrates the multiplication of unsigned binary
integers, as might be carried out using paper and pencil. Several important observa-
tions can be made:

1. Multiplication involves the generation of partial products, one for each digit in the
multiplier. These partial products are then summed to produce the final product.

2. The partial products are easily defined. When the multiplier bit is 0, the partial
product is 0. When the multiplier is 1, the partial product is the multiplicand.

3. The total product is produced by summing the partial products. For this opera-
tion, each successive partial product is shifted one position to the left relative to
the preceding partial product.

4. The multiplication of two n-bit binary integers results in a product of up to 2n
bits in length (e.g., 11 X 11 = 1001).

Compared with the pencil-and-paper approach, there are several things we can
do to make computerized multiplication more efficient. First, we can perform a run-
ning addition on the partial products rather than waiting until the end. This eliminates
the need for storage of all the partial products; fewer registers are needed. Second, we
can save some time on the generation of partial products. For each 1 on the multiplier,
an add and a shift operation are required; but for each 0, only a shift is required.

Figure 9.8a shows a possible implementation employing these measures. The
multiplier and multiplicand are loaded into two registers (Q and M). A third register,
the A register, is also needed and is initially set to 0. There is also a 1-bit C register,
initialized to 0, which holds a potential carry bit resulting from addition.

The operation of the multiplier is as follows. Control logic reads the bits of the
multiplier one at a time. If Qy is 1, then the multiplicand is added to the A register
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Multiplicand
M + « [M]

sl Add Shift and add
p——————— - nebit adder - .
? iy ' control logic

Shift right

G 4
’_C Ag| o e e [Af—{Qu] + ¢+ Q]

\J—T\—/ Multiplier
(a) Block diagram
C A Q M

0 0000 1101 1011 = Initial values

0 1011 1101 - 1011  Ad&d }Firjsc

0 0101 1110 1011 .. shift cycle
- : . Second
0 0010 11711 1011 shift } cycle

0 1101 1111 1011 Add Third
0 0110 1111 1011 Shift cycle

1 0001 1111 1011 Add ;}:Fqurch,
0 1000 1111 1011 shift cycle

(b) Examiple from Figure 9.7 (product in A, Q)
Figure 9.8 Hardware Implementation of Unsigned Binary Multiplication

and the result is stored in the A register, with the C bit used for overflow. Then all of
the bits of the C, A, and Q registers are shifted to the right one bit, so that the C bit
goes into A,_;, Ag goes into Q,_y, and Qy is lost. If Qg is 0, then no ~4dition is per-
formed, just the shift. This process is repeated for each bit of the original multiplier.
The resulting 2n-bit product is contained in the A and Q registers. A flowchart of
the operation is shown in Figure 9.9, and an example is given in Figure 9.8b. Note
that on the second cycle, when the multiplier bit is 0, there is no add operation.

Twos Complement Multiplication We have seen that addition and subtrac-
tion can be performed on numbers in twos complement notation by treating them as
unsigned integers. Consider

1001
+0011
1100
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Figure 9.9 Flowchart for Unsigned Binary Multiplication

If these numbers are considered to be unsigned integers, then we are adding 9 (1001)
plus 3 (0011) to get 12 (1100). As twos complement integers, we are adding —7 (1001)
to 3 (0011) to get —4 (1100).

Unfortunately, this simple scheme will not work for multiplication. To see this,
consider again Figure 9.7. We multiplied 11 (1011) by 13 (1101) to get 143
(10001111). If we interpret these as twos complement numbers, we have —5 (1011)
times —3 (1101) equals —113 (10001111). This example demonstrates that straight-
forward multiplication will not work if both the multiplicand and multiplier are neg-
ative. In fact, it will not work if either the multiplicand or the multiplier is negative.
To justify this statement, we need to go back to Figure 9.7 and explain what is being
done in terms of operations with powers of 2. Recall that any unsigned binary num-
ber can be expressed as a sum of powers of 2. Thus,

1101 =1 X224+ 1Xx22+0x2' +1x2°
=22 +22+2°

Further, the multiplication of a binary number by 2" is accomplished by shifting that
number to the left n bits. With this in mind, Figure 9.10 recasts Figure 9.7 to make
the generation of partial products by multiplication explicit. The only difference in
Figure 9.10 is that it recognizes that the partial products should be viewed as 2n-bit
numbers generated from the n-bit multiplicand.
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1011
x 1101 :
00001011 - 1011 x 1% 2°
00000000 1011 x 0 x 2%
00101100 1011 x 1 x 22
01011000 1011 x 1 x 23

10001111

Figure 9.10 Multiplication of Two
Unsigned 4-Bit Integers Yielding an
8-Bit Result

Thus, as an unsigned integer, the 4-bit multiplicand 1011 is stored in an 8-bit
word as 00001011. Each partial product (other than that for 2°) consists of this num-
ber shifted to the left, with the unoccupied positions on the right filled with zeros
(e.g., a shift to the left of two places yields 00101100).

Now we can demonstrate that straightforward multiplication will not work if
the multiplicand is negative. The problem is that each contribution of the negative
multiplicand as a partial product must be a negative number on a 2n-bit field; the sign
bits of the partial products must line up. This is demonstrated in Figure 9.11, which
shows that muitiplication of 1001 by 0011. If these are treated as unsigned integers,
the multiplication of 9 X 3 = 27 proceeds simply. However, if 1001 is interpreted as
the twos complement value —7, then each partial product must be a negative twos
complement number of 2n (8) bits, as shown in Figure 9.11b. Note that this is accom-
plished by padding out each partial product to the left with binary 1s.

If the multiplier is negative, straightforward multiplication also will not work.
The reason is that the bits of the multiplier no longer correspond to the shifts or
multiplications that must take place. For example, the 4-bit decimal number —3 is
written 1101 in twos complement. If we simply took partial products based on each
bit position, we would have the following correspondence:

1101 «— —(1 X 22 + 1 x 22+ 0 x 2! +1 x2% = —(2° + 22 + 29)

In fact, what is desired is —(2' + 2°). So this multiplier cannot be used directly in
the manner we have been describing.

There are a number of ways out of this dilemma. One would be to convert
both multiplier and multiplicand to’ positive numbers, perform the multiplication,
and then take the twos complement of the result if and only if the sign of the two

1001 - (9): e T aze01 (-7)
X0011 (3)r e F T x0011 (3)
00001001 1001 x 2° 11111001 (-7) x 2° = (-7)
00010010 1001 x 2! 11110010 (-7) x 2! = (-14)
00011011 (27) 11101011 (-21)
(a) Unsigned integers (b) Twos complement integers

Figure 9.11  Comparison of Multiplication of Unsigned and Twos
Complement Integers
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original numbers differed. Implementers have preferred to use techniques that do
not require this final transformation step. One of the most common of these is
Booth’s algorithm. This algorithm also has the benefit of speeding up the multiplica-
tion process, relative to a more straightforward approach.

Booth’s algorithm is depicted in Figure 9.12 and can be described as follows.
As before, the multiplier and multiplicand are placed in the Q and M registers,
respectively. There is also a 1-bit register placed logically to the right of the least sig-
nificant bit (Qy) of the Q register and designated Q_j; its use is explained shortly.
The results of the multiplication will appear in the A and Q registers. A and Q_, are
initialized to 0. As before, control logic scans the bits of the multiplier one at a time.
Now, as each bit is examined, the bit to its right is also examined. If the two bits are
the same (1-1 or 0-0), then all of the bits of the A, Q, and Q_, registers are shifted to
the right 1 bit. If the two bits differ, then the multiplicand is added to or subtracted
from the A register, depending on whether the two bits are 0-1 or 1-0. Following
the addition or subtraction, the right shift occurs. In either case, the right shift is
such that the leftmost bit of A, namely A, _;, not only is shifted into A ,_,, but also
remains in A,,_;, This is required to preserve the sign of the number in A and Q. Itis
known as an arithmetic shift, because it preserves the sign bit.

Figure 9.13 shows the sequence of events in Booth’s algorithm for the multi-
plication of 7 by 3. More compactly, the same operation is depicted in Figure 9.14a.

Ae0,Q_,<0
M ¢« Multiplicand
Q « Multiplier
Count «—n

Figure 9.12 Booth’s Algorithm for Twos
Complement Multiplication
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A Q Q. Mo

0000 0011 0 0111 Initial values

1001 0011 0 0111 A& A - M} First

1100 1001 1 0111 Shift cycle
o }_ Second

1110 0100 10111  Shift § cycle

0101 0100 170111 ¢ A & A+ n}f “Third

0010 1010 0 0111 Shift cycle

0001 - 0101 0 o111 shift " eyele

307

Figure 9.13  Example of Booth’s Algorithm (7 X 3)

The rest of Figure 9.14 gives other examples of the algorithm. As can be seen, it
works with any combination of positive and negative numbers. Note also the effi-
ciency of the algorithm. Blocks of 1s or 0s are skipped over, with an average of only
one addition or subtraction per block.

Why does Booth’s algorithm work? Consider first the case of a positive multiplier.
In particular, consider a positive multiplier consisting of one block of 1s surrounded
by 0s (for example, 00011110). As we know, multiplication can be achieved by adding
appropriately shifted copies of the multiplicand:

M X (00011110) = My M@ -8 2% ¢

The number of such operations can be reduced to two if we observe that

2"+ 2m . K = pnrl oK 9.3)
0111 ST0111
%X 0011 (0) x1101- (0}
11111001 1-0 11111001 1-0
0000000 1-1 0000111 0-1
000111 0-1 111001 1-0
00010101 (21) 11101011~ (-21)

@@ X 3)=@2D

®) () X (-3)=(-2D

1001 1001
x 0011 (0) X 1101 (0)
00000111 1-0 00000111 1-0
0000000 1-1 . 1111001 0-1
111001 0-1 000111 1-0
11101011 (-21) 00010101 21

© (=7 X3)=(-21)

@ N X (=3)=@2D
Figure 9.14 Examples Using Booth’s Algorithm
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.M X (00011110) = M X (25 - 2!)
s ="M X 30
So the product can be generated by one addition and one subtraction of the multi-

plicand. This scheme extends to any number of blocks of 1s in a multiplier, including
the case in which a single 1 is treated as a block.

10) =MXx(25+25+24+2° +2))
oo =MX (2" -23+22-2))

Booth’s algorithm conforms to this scheme by performing a subtraction when the
first 1 of the block is encountered (1-0) and an addition when the end of the block
is encountered (0-1).

To show that the same scheme works for a negative multiplier, we need to
observe the following. Let X be a negative number in twos complement notation:

Representation of X' = {1x,_,x,_3...x;x}
Then the value of X can be expressed as follows:
X = =214 (X, X 2" D) 4 (2,3 X 2773 + o+ (X2 4 (xy X 20 (9.4)

The reader can verify this by applying the algorithm to the numbers in Table 9.2.
The leftmost bit of X is 1, because X is negative. Assume that the leftmost 0 is
in the kth position. Thus, X is of the form

Representation of X = {111...10x;_ x4 _5... x;x} 9.5)

Then the value of X is
X =214 2m 2 2R (g X 26T 4+ (x X 29) 9.6)
Frora Equation (9.3), we can say that
M2 4 gn=3 . 4 ookl — gn-l _ okt
Rearranging,
—n=1 4 gn=2 4 an=3 L L 4 ok+l — okl 9.7)
Substituting Equation (9.7) into Equation (9.6), we have
X = 2K 4 (o x 2K 4 4 (9 x 29) 98

At last we can return to Booth’s algorithm. Remembering the representation
of X [Equation (9.5)], it is clear that all of the bits from x, up to the leftmost 0 are
handled properly because they produce all of the terms in Equation (9.8) but
(—2%*1) and thus are in the proper form. As the algorithm scans over the leftmost 0
and encounters the next 1 (2*!) a 1-0 transition occurs and a subtraction takes
place (—2%*1). This is the remaining term in Equation (9.8).
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As an example, consider the Won of some multiplicand by (—6). In-
twos complement representation, using an 8-bit word, (—6) is reptesenwd as
11111010. By Equatlon (9.4), we know that ,

—6——-27+26+25-¥-2‘+23+21
which the reader can easily venfy Thus, ‘
M X (11111010) = M X (—2” + 2+ 2F 2+ 2"’+ 2h

Using Equation (9.7), '
M X (nmme) “M X (=22 +2Y -

which the reader can verify is stxll M X (—-6) Fmally, following dnr earber lme of
reasoning,

M X (11111010) M X ( 23 +22-2Y

i

We can see that Booth’s algorithm conforms to this scheme. It performs a subtrac-
tion when the first 1 is encountered (1-0), an addition when (01) is encountered, and
finally another subtraction when the first 1 of the next block of 1s is encountered.
Thus, Booth’s algorithm performs fewer additions and subtractions than a more
straightforward algorithm.

Division

Division is somewhat more complex than multiplication but is based on the same
general principles. As before, the basis for the algorithm is the paper-and-pencil ap-
proach, and the operation involves repetitive shifting and addition or subtraction.

Figure 9.15 shows an example of the long division of unsigned binary integers. It
is instructive to describe the process in detail. First, the bits of the dividend are exam-
ined from left to right, until the set of bits examined represents a number greater than
or equal to the divisor; this is referred to as the divisor being able to divide the number.
Until this event occurs, 0s are placed in the quotient from left to right. When the event
occurs, a 1 is placed in the quotient and the divisor is subtracted from the partial divi-
dend. The result is referred to as a partial remainder. From this point on, the division
follows a cyclic pattern. At each cycle, additional bits from the dividend are appended
to the partial remainder until the result is greater than or equal to the divisor. As

00001101 = Quotient

Divisor-—» 1011/10010311 <t Dividend
1011

00111011
st
Partial 001111

ind 1011
re s . 100 <——— Remainder

Figure .15 Example of Division of Unsigned
Binary Integers
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Count « Count — 1

Quotient in Q
Remainder in A

Figure 9.16 Flowchart for Unsigned Binary Division

before, the divisor is subtracted from this number to produce a new partial remainder.
The process continues until all the bits of the dividend are exhausted.

Figure 9.16 shows a machine algorithm that corresponds to the long division
process. The divisor is placed in the M register, the dividend in the Q register. At each
step, the A and Q registers together are shifted to the left 1 bit. M is subtracted from A
to determine whether A divides the partial remainder.? If it does, then Qg getsa 1 bit.
Otherwise, Qg gets a 0 bit and M must be added back to A to restore the previous
value. The count is then decremented, and the process continues for n steps. At the
end, the quotient is in the Q register and the remainder is in the A register.

This process can, with some difficulty, be extended to negative numbers. We
give here one approach for twos complemént numbers. Several examples of this
approach are shown in Figure 9.17. The algorithm can be summarized as follows:

3This is subtraction of unsigned integers. A result that requires a borrow out of the most significant bit is
a negative result.
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A Q M = 0011 A Q M = 1101
0000 0111 Initial value 0000 0111 Initial value
0000 1110 Shift 0000 1110 Shift
1101 Subtract . 1101 : Add
0000 1110 Restore 0000 1110 Restore
0001 1100 Shift 0001 1100 Shift
1110 Subtract 1110 Add
0001 1100 Restore 0001 1100 Restore
0011 1000 Shift 0011 1000 Shift
0000 Subtract 0000 Add
0000 1001 SetQp = 1 0000 1001 Set Q= 1
0001 0010 Shift . 0001 © 0010 - Shift
1110 Subtract 1110 Add
0001 0010 Restore , 0001 0010 Restore

@) (T(3) (b) (MH(—3)

A Q M = 0011 A Q M = 1101
1111 1001 Initial value 1111 1001 Initial value
1111 0010 Shift 1111 00100 ' Shift
0010 Add 0010 . : - Subtract
1111 0010 Restore 1111 0010 . Restore
1110 0100 Shift o 1110 0100 Shift
0001 Add 0001 Subtract
1110 0100 Restore 1110 0100 Restore
1100 1000 Shift 1100 1000 Shift
1111 Add 1111 . Subtract
1111 1001 SetQp = 1 1111 1601 SetQy =1
1111 0010 Shift 1111 0010 Shift .
0010 Add 0010 Subtract
1111 0010 Restore 1111 0010 Restore

©) (=NI(3 d) (=NI(-3)

Figure 9.17 Examples of Twos Complement Division

. Load the divisor into the M register and the dividend into the A, Q registers.

The dividend must be expressed as a 2n-bit twos complement number. Thus,
for example, the 4-bit 0111 becomes 00000111, and 1001 becomes 11111001.

Shift A, Q left 1 bit position.

. If M and A have the same signs, perform A < A — M; otherwise, A < A + M.
. The preceding operation is successful if the sign of A is the same before and after

the operation.

a. If the operation is successful or A = 0, then set Qy <« 1.

b. If the operation is unsuccessful and A # 0, then set Qg «— 0 and restore the
previous value of A.

Repeat steps 2 through 4 as many times as there are bit positions in Q.

The remainder is in A. If the signs of the divisor and dividend were the same, then
the quotient is in Q; otherwise, the correct quotient is the twos complement of Q.
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The reader will note from Figure 9.17 that (—7)/(3) and (7)/(—3) produce
different remainders. This is because the remainder is defined by

D=0QXV+R

where
D = dividend
Q = quotient
V = divisor

R = remainder

The results of Figure 9.17 are consistent with this formula.

9.4 FLOATING-POINT REPRESENTATION

Principles

With a fixed-point notation (e.g., twos complement) it is possible to represent a range of
positive and negative integers centered on 0. By assuming a fixed binary or radix point,
this format allows the representation of numbers with a fractional component as well.

This approach has limitations. Very large numbers cannot be represented, nor
can very small fractions. Furthermore, the fractional part of the quotient in a divi-
sion of two large numbers could be lost.

For decimal numbers, one gets around this limitation by using scientific notation.
Thus, 976,000,000,000,000 can be represented as 9.76 X 10", and 0.0000000000000976
can be represented as 9.76 X 107'%. What we have done, in effect, is dynamically to
slide the decimal point to a convenient location and use the exponent of 10 to keep
track of that decimal point. This allows a range of very large and very small numbers to
be represented with only a few digits.

This same approach can be taken with binary numbers. We can represent a
number in the form

+S x B*E
This number can be stored in a binary word with three fields:

* Sign: plus or minus
* Significand S
* Exponent E

The base B is implicit and need not be stored because it is the same for all num-
bers. Typically, it is assumed that the radix point is to the right of the leftmost, or
most significant, bit of the significand. That is, there is one bit to the left of the
radix point.

The principles used in representing binary floating-point numbers are best ex-
plained with an example. Figure 9.18a shows a typical 32-bit floating-point format.
The leftmost bit stores the sign of the number (0 = positive, 1 = negative). The
exponent value is stored in the next 8 bits. The representation used is known as a
biased representation. A fixed value, called the bias, is subtracted from the field to
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Sign of
significand 3 bits 23 bits
M| Biased exponent ) Significand
(a) Format
1.1010001 x 2%% = 0 10010011 10100010000000000000000 = 1.6328125 x 2°°
-1.1010001 x 2'" = 1 10010011 101000100000006000000000 = -1.6328125 x 2°°
1.1010001 x 2719 = 0 01101011 10100010000000000000000 = 1.6328125 x 27°°
-1.1010001 x 2 "% = 1 01101011 10100010000000000000000 = -1.6328125 x 27°°

(b) Examples
Figure 9.18 Typical 32-Bit Floating-Point Format

get the true exponent value. Typically, the bias equals (27! — 1), where & is the
number of bits in the binary exponent. In this case, the 8-bit field yields the numbers
0 through 255. With a bias of 127 (27 — 1), the true exponent values are in the range
—127 to +128. In this example, the base is assumed to be 2.

Table 9.2 shows the biased representation for 4-bit integers. Note that when
the bits of a biased representation are treated as unsigned integers, the relative mag-
nitudes of the numbers do not change. For example, in both biased and unsigned
representations, the largest number is 1111 and the smallest number is 0000. This is
not true of sign-magnitude or twos complement representation. An advantage of bi-
ased representation is that nonnegative floating-point numbers can be treated as in-
tegers for comparison purposes.

The final portion of the word (23 bits in this case) is the significand.*

Any floating-point number can be expressed in many ways.

The following are equivalent, where the significand is expressed in %inéry form:
0110 x 2°
10X 22
0.0110 x 28

To simplify operations on floating-point numbers, it is typically required that they
be normalized. A normalized number is one in which the most significant digit of
the significand is nonzero. For base 2 representation, a normalized number is there-
fore one in which the most significant bit of the significand is one. As was men-
tioned, the typical convention is that there is one bit to the left of the radix point.
Thus, a normalized nonzero number is one in the form

+1.bbb...b x 2%E

where b is either binary digit (0 or 1). Because the most significant bit is always
one, it is unnecessary to store this bit; rather, it is implicit. Thus, the 23-bit field

*The term mantissa, sometimes used instead of significand, is considered obsolete. Mantissa also means
the fractional part of a logarithm, so is best avoided in this context.
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is used to store a 24-bit significand with a value in the half open interval [1,2).
Given a number that is not normalized, the number may be normalized by shift-
ing the radix point to the right of the leftmost 1 bit and adjusting the exponent
accordingly.

Figure 9.18b gives some examples of numbers stored in this format. For each
example, on the left is the binary number; in the center is the corresponding bit
pattern; on the right is the decimal value. Note the following features:

¢ The sign is stored in the first bit of the word.

* The first bit of the true significand is always 1 and need not be stored in the
significand field.

The value 127 is added to the true exponent to be stored in the exponent field.
* The base is 2.

For comparison, Figure 9.19 indicates the range of numbers that can be repre-
sented in a 32-bit word. Using twos complement integer representation, all of the in-
tegers from —23! to 23! ~ 1 can be represented, for a total of 232 different numbers.
With the example floating-point format of Figure 9.18, the following ranges of num-
bers are possible:

* Negative numbers between —(2 — 272%) x 212 apd —27177
* Positive numbers between 27?7 and (2 — 27%) x 2128

Five regions on the number line are not included in these ranges:

* Negative numbers less than —(2 — 27%%) x 2!%8, called negative overflow
* Negative numbers greater than 27'?, called negative underflow

e Zero
Expressible integers
L e
-3 0 211 line
(a) Twos complement integers

Negative Positive

underflow underflow
Negative Expressible negative Expressible positive Positive
overflow numbers Ze numbers overflow

ro

%/

—(2—27B) x 2128 —9-127 0 2127 (2—-2"3) x 218 line

(b) Floating-point numbers

Figure 9.19  Expressible Numbers in Typical 32-Bit Formats
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A

-n 0 n 2n 4n
Figure 9.20 Density of Floating-Point Numbers

2—127

¢ Positive numbers less than , called positive underflow

s Positive numbers greater than (2 — 272) x 2% called positive overflow

The representation as presented will not accommodate a value of 0. However, as
we shall see, actual floating-point representations include a special bit pattern to desig-
nate zero. Overflow occurs when an arithmetic operation results in a magnitude greater
than can be expressed with an exponent of 128 (e.g., 2'% x 21% = 2220) Underflow
occurs when the fractional magnitude is too small (e.g., 2712 x 2710 = 27220) Under-
flow is a less serious problem because the result can generally be satisfactorily approxi-
mated by 0.

It is important to note that we are not representing more individual values
with floating-point notation. The maximum number of different values that can be
represented with 32 bits is still 2*2. What we have done is to spread those numbers
out in two ranges, one positive and one negative.

Also, note that the numbers represented in floating-point notation are not
spaced evenly along the number line, as are fixed-point numbers. The possible val-
ues get closer together near the origin and farther apart as you move away, as shown
in Figure 9.20. This is one of the trade-offs of floating-point math: Many calculations
produce results that are not exact and have to be rounded to the nearest value that
the notation can represent.

In the type of format depicted in Figure 9.18, there is a trade-off between
range and precision. The example shows 8 bits devoted to the exponent and 23 to
the significand. If we increase the number of bits in the exponent, we expand the
range of expressible numbers. But because only a fixed number of different values
can be expressed, we have reduced the density of those numbers and therefore the
precision. The only way to increase both range and precision is to use more bits.
Thus, most computers offer, at least, single-precision numbers and double-precision
numbers. For example, a single-precision format might be 32 bits, and a double-
precision format 64 bits.

So there is a trade-off between the number of bits in the exponent and the num-
ber of bits in the significand. But it is even more complicated than that. The implied
base of the exponent need not be 2. The IBM $/390 architecture, for example, uses a
base of 16 [ANDE67b]. The format consists of a 7-bit exponent and a 24-bit significand.

In ‘the‘ IBM base-16 format, e
0.11010001 X 219 = 011010001 X 16~ ..

and the exponent is stored to represent 5 rather than 20. .
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The advantage of using a larger exponent is that a greater range can be achieved
for the same number of exponent bits. But remember, we have not increased the num-
ber of different values that can be represented. Thus, for a fixed format, a larger expo-
nent base gives a greater range at the expense of less precision.

IEEE Standard for Binary Floating-Point Representation

The most important floating-point representation is defined in IEEE Standard 754,
adopted in 1985. This standard was developed to facilitate the portability of pro-
grams from one processor to another and to encourage the development of sophis-
ticated, numerically oriented programs. The standard has been widely adopted and
is used on virtually all contemporary processors and arithmetic COPIoCessors.

The IEEE standard defines both a 32-bit single and a 64-bit double format
(Figure 9.21), with 8-bit and 11-bit exponents, respectively. The implied base is 2. In
addition, the standard defines two extended formats, single and double, whose exact
format is implementation dependent. The extended formats include additional bits
in the exponent (extended range) and in the significand (extended precision). The
extended formats are to be used for intermediate calculations. With their greater preci-
sion, the extended formats lessen the chance of a final result that has been contaminat-
ed by excessive roundoff error; with their greater range, they also lessen the chance
of an intermediate overflow aborting a computation whose final result would have
been representable in a basic format. An additional motivation for the single extended
format is that it affords some of the benefits of a double format without incurring the
time penalty usually associated with higher precision. Table 9.3 summarizes the charac-
teristics of the four formats.

Not all bit patterns in the IEEE formats are interpreted in the usual way; in-
stead, some bit patterns are used to represent special values. Table 9.4 indicates the
values assigned to various bit patterns. The extreme exponent values of all zeros (0)
and all ones (255 in single format, 2047 in double format) define special values. The
following classes of numbers are represented:

* For exponent values in the range of 1 through 254 for single format and 1
through 2046 for double format, normalized nonzero floating-point numbers
are represented. The exponent is biased, so that the range of exponents is —126

St‘,ﬁ" ~<—8 Bits—>— 23 Bits
\5 . Bixsed Fraction
] -exponent
(a) Single format
Sign -<«—11 Bits 52 Bits
bit "
\ sfl ased Fraction
ponent
(b) Double format

Figure 9.21 IEEE 754 Formats
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Table 9.3 IEEE 754 Format Parameters

*Not including implied bit

through +127 for single format and —1022 through +1023. A normalized num-
ber requires a 1 bit to the left of the binary point; this bit is implied, giving an
effective 24-bit or 53-bit significand (called fraction in the standard).

* An exponent of zero together with a fraction of zero represents positive or
negative zero, depending on the sign bit. As was mentioned, it is useful to have
an exact value of 0 represented.

* An exponent of all ones together with a fraction of zero represents positive
or negative infinity, depending on the sign bit. It is also useful to have a rep-
resentation of infinity. This leaves it up to the user to decide whether to treat
overflow as an error condition or to carry the value oo and proceed with
whatever program is being executed.

* An exponent of zero together with a nonzero fraction represents a denormal-
ized number. In this case, the bit to the left of the binary point is zero and the
true exponent is —126 or —1022. The number is positive or negative depend-
ing on the sign bit.

* An exponent of all ones together with a nonzero fraction is given the value NaN,
which means Not a Number, and is used to signal various exception conditions.

The significance of denormalized numbers and NaNs is discussed in Section 9.5.

9.5 FLOATING-POINT ARITHMETIC

Table 9.5 summarizes the basic operations for floating-point arithmetic. For addition
and subtraction, it is necessary to ensure that both operands have the same exponent
value. This may require shifting the radix point on one of the operands to achieve
alignment. Multiplication and division are more straightforward.
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Table 9.5 Floating-Point Numbers and Arithmetic Operations

319

Floating Point Numbers Arithmetic Operations
X = Xg X BXe X +Y = (Xg X BXeVe + Yg) X BYe iy
Y = Ys X BYt X - Y = (Xs x BXeYe - Yo x BY=[TE T T8
: X XY = (X5 X Yg) X BXetYe
X XS) Xe-Y,
= —] X BTTE
- (%
Examples:
X =03x10>=30

=02 % 10* = 200

+Y = (03 %1027 +02) x 10° = 023 x 10° = 230

0.17) x 10* = =170

X Y = (03 X 02) X 1023 = 0.06 X 10° = 6000
Sy =(03+02)x 1023 =15x10" =015

Y
X
X -Y=(03x10273-02)x 10" = (-
X
X

A floating-point operation may produce one of these conditions:

Exponent overflow: A positive exponent exceeds the maximum possible expo-
nent value. In some systems, this may be designated as +00 or — .

Exponent underflow: A negative exponent is less than the minimum possible
exponent value (e.g., —200 is less than —127). This means that the number is
too small to be represented, and it may be reported as 0.

Significand underflow: In the process of aligning significands, digits may flow
off the right end of the significand. As we shall discuss, some form of rounding
is required.

Significand overflow: The addition of two significands of the same sign may re-
sult in a carry out of the most significant bit. This can be fixed by realignment,

as we shall explain.

Addition and Subtraction

In floating-point arithmetic, addition and subtraction are more complex than muiti-
plication and division. This is because of the need for alignment. There are four basic
phases of the algorithm for addition and subtraction:

1. Check for zeros.

2. Align the significands.

3. Add or subtract the significands.

4. Normalize the result.

A typical flowchart is shown in Figure 9.22. A step-by-step narrative highlights
the main functions required for floating-point addition and subtraction. We assume
a format similar to those of Figure 9.21. For the addition or subtraction operation,
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the two operands must be transferred to registers that will be used by the ALU. If
the floating-point format includes an implicit significand bit, that bit must be made
explicit for the operation.

Phase 1: Zero check. Because addition and subtraction are identical except
for a sign change, the process begins by changing the sign of the subtrahend if
it is a subtract operation. Next, if either operand is 0, the other is reported as
the result.

Phase 2: Significand alignment. The next phase is to manipulate the numbers
so that the two exponents are equal.

To see the necdfor aligning exponents, consider the fol owing de
| (123 x 109 + (456 X ‘516*2)

it be set into

Clearly, we cannot just add the significands. The digits must first |
equivalent positions, that is, the 4 of the second number must be aligned with

the 3 of the first. Under these conditions, the two exponents will be equal, which

is the mathematical condition under which two numbers
added. Thus, , ’ S S e

in this form can be

Alignment may be achieved by shifting either the smaller number to the

right (increasing its exponent) or shifting the larger number to the left. Because
either operation may result in the loss of digits, it is the smaller number that is
shifted; any digits that are lost are therefore of relatively small significance. The
alignment is achieved by repeatedly shifting the magnitude portion of the signifi-
cand right 1 digit and incrementing the exponent until the two exponents are
equal. (Note that if the implied base is 16, a shift of 1 digit is a shift of 4 bits.) If
this process results in a 0 value for the significand, then the other number is re-
ported as the result. Thus, if two numbers have exponents that differ significantly,
the lesser number is lost.

Phase 3: Addition. Next, the two significands are added together, taking
into account their signs. Because the signs may differ, the result may be 0.
There is also the possibility of significand overflow by 1 digit. If so, the sig-
nificand of the result is shifted right and the exponent is incremented. An
exponent overflow could occur as a result; this would be reported and the
operation halted.

Phase 4: Normalization. The final phase normalizes the result. Normalization
consists of shifting significand digits left until the most significant digit (bit, or
4 bits for base-16 exponent) is nonzero. Each shift causes a decrement of the
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exponent and thus could cause an exponent underflow. Finally, the result must
be rounded off and then reported. We defer a discussion of rounding until
after a discussion of multiplication and division.

Multiplication and Division

Floating-point multiplication and division are much simpler processes than addition
and subtraction, as the following discussion indicates.

We first consider multiplication, illustrated in Figure 9.23. First, if either
operand is 0, 0 is reported as the result. The next step is to add the exponents. If the
exponents are stored in biased form, the exponent sum would have doubled the
bias. Thus, the bias value must be subtracted from the sum. The result could be either
an exponent overflow or underflow, which would be reported, ending the algorithm.

If the exponent of the product is within the proper range, the next step is to mul-
tiply the significands, taking into account their signs. The multiplication is performed

Report
overflow

Report
underflow

Round RETURN

Figure 9.23  Floating-Point Multiplication (Z « X x Y)



9.5 / FLOATING-POINT ARITHMETIC 323

in the same way as for integers. In this case, we are dealing with a sign-magnitude rep-
resentation, but the details are similar to those for twos complement representation.
The product will be double the length of the multiplier and multiplicand. The extra
bits will be lost during rounding.

After the product is calculated, the result is then normalized and rounded, as
was done for addition and subtraction. Note that normalization could result in ex-
ponent underflow.

Finally, let us consider the flowchart for division depicted in Figure 9.24.
Again, the first step is testing for 0. If the divisor is 0, an error report is issued, or the
result is set to infinity, depending on the implementation. A dividend of 0 results
in 0. Next, the divisor exponent is subtracted from the dividend exponent. This
removes the bias, which must be added back in. Tests are then made for exponent
underflow or overflow.

The next step is to divide the significands. This is followed with the usual nor-
malization and rounding.

DIVIDE

\ L
l Round '——H RETURN j<—!

Figure 9.24  Floating-Point Division (Z < X/Y)
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Precision Considerations

Guard Bits We mentioned that, prior to a floating-point operation, the exponent
and significand of each operand are loaded into ALU registers. In the case of the
significand, the length of the register is almost always greater than the length of the
significand plus an implied bit. The register contains additional bits, called guard
bits, which are used to pad out the right end of the significand with Os.

=1L ‘NXZIWYEIH .11 %29, Ifthtmammm to be
'+ 1 asbircted from the larger, it:must be shifted:sight 1 bit to.align the exponents.
’mkushmvninﬁgure 9.25a. In the process, Y loses:1: bis.of significance; the re-
sult is 2°2, The same operation is repeated in part (b) with the addition of guard
m‘ﬁwﬁm ieast significant bit is not lost due to ahgmnent anci the result is

Rounding Another detail that affects the precision of the result is the rounding
policy. The result of any operation on the significands is generally stored in a longer
register. When the result is put back into the floating-point format, the extra bits
must be disposed of.

A number of techniques have been explored for performing rounding. In fact,
the IEEE standard lists four alternative approaches:

* Round to nearest: The result is rounded to the nearest representable number.
* Round toward + oo: The result is rounded up toward plus infinity.

x=1.000..... 00 x 2* x = .100000 x 16
-y = 0.111..... 11 x 2? -y = .OFFFFF x 16
z = 0.000..... 01 x 2t - z = .000001 x 16°
= 1.000..... 00 x 2722 = .100000 x 1674
(a) Binary example, without guard bits (c) Hexadecimal example, without guard bits
x = 1.000..... 00 0000 x 2! x = .100000 00 x 16’
-y = 0.111..... 11 1000 x 21 -y = .OFFFFF FO x 16!
.z =0.000..... 00 1000 x 21 z = .000000 10 x 16!
= 1.000..... 00 0000 x 2723 = .100000 00 x 167°
(b) Binary example, with guard bits (d) Hexadecimal example, with guard bits

Figure 9.25 The Use of Guard Bits
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* Round toward — co: The result is rounded down toward negative infinity.
* Round toward 0: The result is rounded toward zero.

Let us consider each of these policies in turn. Round to nearest is the default
rounding mode listed in the standard and is defined as follows: The representable
value nearest to the infinitely precise result shall be delivered.

If the extra bits, beyond the 23 bits that can be stored, are 10010, then the extra
bits amount to more than one-half of the last representable bit position. In this
case, the correct answer is to add binary 1 to the last representable bit, rounding
up to the next representable number. Now consider that the extra bits are 01111.

In this case, the extra bits amount to less than one-half of the last representable
bit position. The correct answer is simply to drop the extra bits (truncate), which
has the effect of rounding down to the next representable number.

The standard also addresses the special case of extra bits of the form
10000.... Here the result is exactly halfway between the two possible repre-
sentable values. One possible technique here would be to always truncate, as this
would be the simplest operation. However, the difficulty with this simple
approach is that it introduces a small but cumulative bias into a sequence of
computations. What is required is an unbiased method of rounding. One possible
approach would be to round up or down on the basis of a random number so that,
on average, the result would be unbiased. The argument against this approach is
that it does not produce predictable, deterministic resuits. The approach taken
by the IEEE standard is to force the result to be even: If the result of a com-
putation is exactly midway between two representable numbers, the value is
rounded up if the last representable bit is currently 1 and not rounded up if it is
currently 0.

The next two options, rounding to plus and minus infinity, are useful in
implementing a technique known as interval arithmetic. Interval arithmetic
provides an efficient method for monitoring and controlling errors in floating-
point computations by producing two values for each result. The two values
correspond to the lower and upper endpoints of an interval that contains the true
result. The width of the interval. which is the difference between the upper and
lower endpoints, indicates the accuracy of the result. If the endpoints of an inter-
val are not representable, then the interval endpoints are rounded down and up,
respectively. Although the width of the interval may vary according to implemen-
tation, many algorithms have been designed to produce narrow intervals. If the
range between the upper and lower bounds is sufficiently narrow, then a suffi-
ciently accurate result has been obtained. If not, at least we know this and can
perform additional analysis.

The final technique specified in the standard is round toward zero. This is, in
fact, simple truncation: The extra bits are ignored. This is certainly the simplest tech-
nique. However, the result is that the magnitude of the truncated value is always less
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than or equal to the more precise original value, introducing a consistent bias to-
ward zero in the operation. This is a serious bias because it affects every operation
for which there are nonzero extra bits.

IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754 goes beyond the simple definition of a format to lay down specific prac-
tices and procedures so that floating-point arithmetic produces uniform, predictable
results independent of the hardware platform. One aspect of this has already been
discussed, namely rounding. This subsection looks at three other topics: infinity,
NaNs, and denormalized numbers.

Inﬁnity Infinity arithmetic is treated as the limiting case of real arithmetic, with
the infinity values given the following interpretation:
—o00 < (every finite number) < +o0

With the exception of the special cases discussed subsequently, any arithmetic
operation involving infinity yields the obvious result.

For example,
5+ (+®) = +00 5 + (+00) = +0
S —(+00) = ~00 (+00) + (+00) = +00
5+ (~00) =~ (—00) + (=00) = —00
5~ (-00) = +00 (~00) = (+0) = —00
5 X (+00) = +00 (+0) = (=00) = +00

Quiet and Signaling NaNs A NaN is a symbolic entity encoded in floating-
point format, of which there are two types: signaling and quiet. A signaling NaN
signals an invalid operation exception whenever it appears as an operand. Signaling
NaNs afford values for uninitialized variables and arithmetic-like enhancements
that are not the subject of the standard. A quiet NaN propagates through almost
every arithmetic operation without signaling an exception. Table 9.6 indicates oper-
ations that will produce a quiet NaN.

Note that both types of NaNs have the same general format (Table 9.4): an
exponent of all ones and a nonzero fraction. The actual bit pattern of the nonzero
fraction is implementation dependent; the fraction values can be used to distinguish
quiet NaNs from signaling NaNs and to specify particular exception conditions.

Denormalized Numbers Denormalized numbers are included in IEEE 754 to
handle cases of exponent underflow. When the exponent of the result becomes too
small (a negative exponent with too large a magnitude), the result is denormalized
by right shifting the fraction and incrementing the exponent for each shift until the
exponent is within a representable range.



9.5 / FLOATING-POINT ARITHMETIC 327

Table 9.6 Operations that Produce a Quiet NaN
Operation Quiet NaN Prod B’

Any Any operation on a signaling NaN
Magnitude subtraction of i k
L (+) + (-
Add or subtract ' k (~00) + (”4.50)

(+00) ~.(+00) .
(=o0) = (=00) -
Multiply 0 X oo
- ! 0 oo
Division : - Qf —
0 oo -
Remainder ‘ x REM 0 or o0 REM ¥
Square root Vxwherex <0 .

Figure 9.26 illustrates the effect of including denormalized numbers. The repre-
sentable numbers can be grouped into intervals of the form [27,2"*]. Within each
such interval, the exponent portion of the number remains constant while the fraction
varies, producing a uniform spacing of representable numbers within the interval. As
we get closer to zero, each successive interval is half the width of the preceding interval
but contains the same number of representable numbers. Hence the density of repre-
sentable numbers increases as we approach zero. However, if only normalized numbers
are used, there is a gap between the smallest normalized number and 0. In the case of
the 32-bit IEEE 754 format, there are 2% representable numbers in each interval, and
the smallest representable positive number is 2712 With the addition of denormalized
numbers, an additional 22> numbers are uniformly added between 0 and 27126,

The use of denormalized numbers is referred to as gradual underflow
[COONS1]. Without denormalized numbers, the gap between the smallest repre-
sentable nonzero number and zero is much wider than the gap between the smallest

| 27[26 2—[25 2“[24 2—123

0
(a) 32-Bit format without denormalized numbers
Uniform
spacing
lllllllllllllll!llilllll ] l | | | l | |
Illllllllllll||||lllll T I 1 1 T T | |
9-126 9-125 9124 9-123
0

(b) 32-Bit format with denormalized numbers

Figure .26 The Effect of IEEE 754 Denormalized Numbers
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representable nonzero number and the next larger number. Gradual underflow fills
in that gap and reduces the impact of exponent underflow to a level comparable
with roundoff among the normalized numbers.

- 9.6 RECOMMENDED READING AND WEB SITE

[ERCE04] and [PARHO0] are excellent treatments of computer arithmetic, covering all of
the topics in this chapter in detail. [FLYNO1] is a useful discussion that focuses on practical
design and implementation issues. For the serious student of computer arithmetic, a very use-
ful reference is the two-volume [SWAR90]. Volume I was originally published in 1980 and
provides key papers (some very difficult to obtain otherwise) on computer arithmetic funda-
mentals. Volume 11 contains more recent papers, covering theoretical, design, and implemen-
tation aspects of computer arithmetic.

For floating-point arithmetic, [GOLD9Y1}] is well named: “What Every Computer Scien-
tist Should Know About Floating-Point Arithmetic.” Another excellent treatment of the topic
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9.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

arithmetic and logic unit mantissa quotient

(ALU) minuend radix point
arithmetic shift multiplicand remainder
base multiplier rounding
biased representation negative overflow sign bit
denormalized number negative underflow significand
dividend normalized number significand overflow
divisor ones complement significand underflow
exponent representation sign-magnitude
exponent overflow overflow representation
exponent underflow partial prOd\lCt subtrahend
fixed-point representation positive overflow twos complement
floating-point representation positive underflow representation
guard bits + product

Review Questions

9.1 Briefly explain the following representations: sign-magnitude, twos complement, biased.

9.2 Explain how to determine if a number is negative in the following representations:
sign-magnitude, twos complement, biased

9.3 What is the sign-extension rule for twos complement numbers?
9.4 How can you form the negation of an integer in twos complement representation?

9.5 In general terms, when does the twos complement operation on an n-bit integer pro-
duce the same integer?

9.6 What is the difference between the twos complement representation of a number and
the twos complement of a number?
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9.7 If we treat 2 twos complement numbers as unsigned integers for purposes of addition,
the result is correct if interpreted as a twos complement number. This is not true for
multiplication. Why?

9.8 What are the four essential elements of a number in floating-point notation?

9.9 What is the benefit of using biased representation for the exponent portion of a float-
ing-point number?

9.10  What are the differences among positive overflow, exponent overflow, and signifi-
cand overflow?
9.11 What are the basic elements of floating-point addition and subtraction?
9.12  Give a reason for the use of guard bits.
9.13  List four alternative methods of rounding the result of a floating-point operation.
Problems

9.1 Represent the following decimal numbers in both binary sign/magnitude and twos
complement using 16 bits: +512; —29.

9.2 Represent the following twos complement values in decimal: 1101011; 0101101.

9.3 Another representation of binary integers that is sometimes encountered is ones
complement. Positive integers are represented in the same way as sign magnitude. A
negative integer is represented by taking the Boolean complement of each bit of the
corresponding positive number.

a. Provide a definition of ones complement numbers using a weighted sum of bits,
similar to Equations (9.1) and (9.2).

b. What is the range of numbers that can be represented in ones complement?

¢. Define an algorithm for performing addition in ones complement arithmetic.

94  Add columns to Table 9.1 for sign magnitude and ones complement.

9.5 Consider the following operation on a binary word. Start with the least significant bit.
Copy all bits that are 0 until the first bit is reached and copy that bit, too. Then take
the complement of each bit thereafter. What is the result? 4

9.6 In Section 9.3, the twos complement operation is defined as follows. To find the twos
complement of X, take the Boolean complement of each bit of X, and then add 1.

a. Show that the following is an equivalent definition. For an n-bit integer X, the
twos complement of X is formed by treating X as an unsigned integer and calcu-
lating (2" - X).

b. Demonstrate that Figure 9.5 can be used to support graphically the claim in part
(a), by showing how a clockwise movement is used to achieve subtraction.

9.7 The r's complement of an n-digit number N in base r is defined as r* — N for N # 0
and 0 for N = 0. Find the tens complement of the decimal number13250.

9.8 Calculate (72530 ~ 13250) using tens complement arithmetic. Assume rules similar
to those for twos complement arithmetic.

9.9 Consider the twos-complement addition of two n-bit numbers:

Ln-1Zp-2-++20 = Xp1Xp-2- .. X0 F Ypo1Yn-2--- Yo
Assume that bitwise addition is performed with a carry bit ¢; generated by the addition
of x;, y;, and ¢;_,. Let v be a binary variable indicating overflow when v = 1. Fill in the
values in the table.

X, 0 0 0 0 1 1 1 1
Input Yn-1 0 0 1 1 0 0 1 1
Cnos 0 1 0 1 0 1 0 1
Zn-1
Output ”
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Assume numbers are represented in 8-bit twos complement representation. Show the
calculation of the following:

a. 6+ 13

b. —6 + 13

c. 6-13

d —-6-13

Find the following differences using twos complement arithmetic:

a. 111000 b. 11001100 ¢. 111100001111 d. 11000011
-110011 — 101110 —-110011110011 —-11101000

Is the following a valid alternative definition of overflow in twos complement arithmetic?
If the exclusive-OR of the carry bits into and out of the leftmost column is 1, then
there is an overflow condition. Otherwise, there is not.

Compare Figures 9.9 and 9.12. Why is the C bit not used in the latter?

Given x = 0101 and y = 1010 in twos complement notation (ie,x =5,y = —6),
compute the product p = x X y with Booth’s algorithm.

Use the Booth algorithm to multiply 23 (multiplicand) by 29 (multiplier), where each
number is represented using 6 bits.

Prove that the multiplication of two n-digit numbers in base B gives a product of no
more than 2n digits.

Verify the validity of the unsigned binary division algorithm of Figure 9.16 by show-
ing the steps involved in calculating the division depicted in Figure 9.15. Use a pre-
sentation similar to that of Figure 9.17.

The twos complement integer division algorithm described in Section 9.3 is known as
the restoring method because the value in the A register must be restored following
unsuccessful subtraction. A slightly more complex approach, known as nonrestoring,
avoids the unnecessary subtraction and addition. Propose an algorithm for this latter
approach.

Under computer integer arithmetic, the quotient J/K of two integers J and K is less
than or equal to the usual quotient. True or false?

Divide —145 by 13 in binary twos complement notation, using 12-bit words. Use the
algorithm described in Section 9.3.

a. Consider a fixed-point representation using decimal digits, in which the implied
radix point can be in any position (e.g., to the right of the least significant digit, to
the right of the most significant digit, and so on). How many decimal digits are
needed to represent the approximations of both Planck’s constant (6.63 X 107%7)
and Avogadro’s number (6.02 X 10%*)? The implied radix point must be in the
same position for both numbers.

b. Now consider a decimal floating-point format with the exponent stored in a
biased representation with a bias of 50. A normalized representation is assumed.
How many decimal digits are needed to represent these constants in this floating-
point format?

Assume that the exponent e is constrained to lie in the range 0 < e = X, with a bias

of ¢, that the base is b, and that the significand is p digits in length.

a. What are the largest and smallest positive values that can be written?

b. What are the largest and smallest positive values that can be written as normal-
ized floating-point numbers?

Express the following numbers in IEEE 32-bit floating-point format:
a. —15 ¢ -15 e. 1/16
bh. -6 d. 384 f. -1/32

The following numbers use the IEEE 32-bit floating-point format. What is the equiv-
alent decimal value?

a. 110000011 11000000000000000000000

b. 001111110 10100000000000000000000

¢. 0 10000000 00000000000000000000000
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9.25

9.26

9.29

9.30

9.31

9.32

9.35

9.36

9.37

Consider a reduced 7-bit IEEE floating-point format, with 3 bits for the exponent and
3 bits for the significand. List all 127 values.

Express the following numbers in IBM’s 32-bit floating-point format, which uses a
7-bit exponent with an implied base of 16 and an exponent bias of 64(40 hexadeci-
mal). A normalized floating-point number requires that the leftmost hexadecimal
digit be nonzero; the implied radix point is to the left of that digit.

a. 1.0 ¢ 1/64 e. —150 g 72 %107
b. 0.5 d. 0.0 f. 5.4 x 1077 h. 65535

Let SBCA000 be a floating-point number in IBM format, expressed in hexadecimal.
What is the decimal value of the number?

What would be the bias value for

a. A base-2 exponent (B = 2) in a 6-bit field?

b. A base-8 exponent (B = 8) in a 7-bit field?

Draw a number line similar to that in Figure 9.19b for the floating-point format of
Figure 9.21b.

Consider a floating-point format with 8 bits for the biased exponent and 23 bits for
the significand. Show the bit pattern for the following numbers in this format:

a. —720

b. 0.645

The text mentions that a 32-bit format can represent a maximum of 2% different
numbers. How many different numbers can be represented in the IEEE 32-bit for-
mat? Explain.

Any floating-point representation used in a computer can represent only certain real
numbers exactly; all others must be approximated. If A’ is the stored value approxi-
mating the real value A, then the relative error, r, is expressed as

;= A-A
A
Represent the decimal quantity +0.4 in the following floating-point format: base = 2;
exponent: biased, 4 bits; significand, 7 bits. What is the relative error?

If A = 1.427, find the relative error if A is truncated to 1.42 and if it is rounded to 1.43.

When people speak about inaccuracy in fleating-point arithmetic, they often ascribe
errors to cancellation that occurs during the subtraction of nearly equal quantities.
But when X and Y are approximately equal, the difference X — Y is obtained exact-
ly, with no error. What do these people really mean?

Numerical values A and B are stored in the computer as approximations A’ and B’.
Neglecting any further truncation or roundoff errors, show that the relative error of
the product is approximately the sum of the relative errors in the factors.

One of the most serious errors in computer calculations occurs when two nearly equal
numbers are subtracted. Consider A = 0.22288 and B = 0.22211. The computer trun-
cates all values to four decimal digits. Thus A’ = 0.2228 and B’ = 0.2221.

a. What are the relative errors for A’ and B'?

b. What is the relative error for C' = A’ — B'?

To get some feel for the effects of denormalization and gradual underflow, consider a
decimal system that provides 6 decimal digits for the significand and the smallest normal-
ized number is 107". A normalized number has one nonzero decimal digit to the left of
the decimal point. Perform the following calculations and denormalize the results, Com-
ment on the results.

a. (2.50000 x 107%) x (3.50000 x 107*)

b. (2.50000 X 107%) x (3.50000 x 107%)
c. (5.67834 x 107%7) — (5.67812 x 10™)
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Show how the following floating-point additions are performed (where significands
are truncated to 4 decimal digits). Show the results in normalized form.
a. 5.566 X 10> + 7.777 X 10° b. 3.344 x 10' + 8.877 X 1072

Show how the following floating-point subtractions are performed (where significands
are truncated to 4 decimal digits). Show the results in normalized form.
a. 7.744 X 107 - 6.666 X 107 b. 8844 x 107 — 2.233 x 107!
Show how the following floating-point calculations are performed (where signifi-

cands are truncated to 4 decimal digits). Show the results in normalized form.
a. (2255 x 10") X (1.234 x 10°)  b. (8.833 x 10%) + (5.555 x 10%)
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10.1 MACHINE INSTRUCTION CHARACTERISTICS

The operation of the processor is determined by the instructions it executes,
referred to as machine instructions or computer instructions. The collection of different
instructions that the processor can execute is referred to as the processor’s
instruction set.

Elements of a Machine Instruction

Each instruction must contain the information required by the processor for execu-
tion. Figure 10.1, which repeats Figure 3.6, shows the steps involved in instruction
execution and, by implication, defines the elements of a machine instruction. These
elements are as follows:

* Operation code: Specifies the operation to be performed (e.g., ADD, I/O). The
operation is specified by a binary code, known as the operation code, or opcode.

* Source operand reference: The operation may involve one or more source
operands, that is, operands that are inputs for the operation.

* Result operand reference: The operation may produce a result.

* Next instruction reference: This tells the processor where to fetch the next
instruction after the execution of this instruction is complete.

The next instruction to be fetched is located in main memory or, in the case of a
virtual memory system, in either main memory or secondary memory (disk). In most
cases, the next instruction to be fetched immediately follows the current instruction.
In those cases, there is no explicit reference to the next instruction. When an explicit
reference is needed, then the main memory or virtual memory address must be sup-
plied. The form in which that address is supplied is discussed in Chapter 11.

Multiple Multiple

Instruction complete, Return for string
fetch next instruction or vector data

Figure 10.1 Instruction Cycle State Diagram
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Source and result operands can be in one of three areas:

* Main or virtual memory: As with next instruction references, the main or vir-
tual memory address must be supplied.

* Processor register: With rare exceptions, a processor contains one or more
registers that may be referenced by machine instructions. If only one register
exists, reference to it may be implicit. If more than one register exists, then
each register is assigned a unique number, and the instruction must contain
the number of the desired register.

* /O device: The instruction must specify the I/O module and device for the
operation. If memory-mapped I/O is used, this is just another main or virtual
memory address.

Instruction Representation

Within the computer, each instruction is represented by a sequence of bits. The
instruction is divided into fields, corresponding to the constituent elements of the
instruction. A simple example of an instruction format is shown in Figure 10.2. As
another example, the IAS instruction format is shown in Figure 2.2. With most
instruction sets, more than one format is used. During instruction execution, an
instruction is read into an instruction register (IR) in the processor. The processor
must be able to extract the data from the various instruction fields to perform the
required operation.

It is difficult for both the programmer and the reader of textbooks to deal with
binary representations of machine instructions. Thus, it has become common prac-
tice to use a symbolic representation of machine instructions. An example of this was
used for the IAS instruction set, in Table 2.1.

Opcodes are represented by abbreviations, called mnemonics, that indicate the
operation. Common examples include

ADD Add

SUB Subtract

MPY Multiply

DIV Divide

LOAD Load data from memory
STOR Store data to memory

Operands are also represented symbolically. For example, the instruction

ADDR,Y
4 Bits 6 Bits 6 Bits
| - Opoode’ Operand reference Operand reference |
16 Bits —

Figure 10.2 A Simple Instruction Format
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may mean add the value contained in data location Y to the contents of register R.
In this example, Y refers to the address of a location in memory, and R refers to a
particular register. Note that the operation is performed on the contents of a loca-
tion, not on its address.

Thus, it is possible to write a machine-language program in symbolic form.
Each symbolic opcode has a fixed binary representation, and the programmer spec-
ifies the location of each symbolic operand. For example, the programmer might
begin with a list of definitions:

X =513
Y =514

and so on. A simple program would accept this symbolic input, convert opcodes
and operand references to binary form, and construct binary machine instructions.

Machine-language programmers are rare to the point of nonexistence. Most
programs today are written in a high-level language or, failing that, assembly
language, which is discussed at the end of this chapter. However, symbolic machine
language remains a useful tool for describing machine instructions, and we will use it
for that purpose.

Instruction Types

Consider a high-level language instruction that could be expressed in a language
such as BASIC or FORTRAN. For example,

X=X+Y

This statement instructs the computer to add the value stored in Y to the value stored
in X and put the result in X. How might this be accomplished with machine instruc-
tions? Let us assume that the variables X and Y correspond to locations 513 and 514.
If we assume a simple set of machine instructions, this operation could be accom-
plished with three instructions:

1. Load a register with the contents of memory location 513.
2. Add the contents of memory location 514 to the register.
3. Store the contents of the register in memory location 513.

As can be seen, the single BASIC instruction may require three machine
instructions. This is typical of the relationship between a high-level language and a
machine language. A high-level language expresses operations in a concise algebraic
form, using variables. A machine language expresses operations in a basic form
involving the movement of data to or from registers.

With this simple example to guide us, let us consider the types of instructions
that must be included in a practical computer. A computer should have a set of
instructions that allows the user to formulate any data processing task. Another way
to view it is to consider the capabilities of a high-level programming language. Any
program written in a high-level language must be translated into machine language
to be executed. Thus, the set of machine instructions must be sufficient to express
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any of the instructions from a high-level language. With this in mind we can catego-
rize instruction types as follows:

¢ Data processing: Arithmetic and logic instructions
¢ Data storage: Memory instructions

¢ Data movement: I/O instructions

¢ Control: Test and branch instructions

Arithmetic instructions provide computational capabilities for processing numeric
data. Logic (Boolean) instructions operate on the bits of a word as bits rather than as
numbers; thus, they provide capabilities for processing any other type of data the user
may wish to employ. These operations are performed primarily on data in processor
registers. Therefore, there must be memory instructions for moving data between mem-
ory and the registers. /O instructions are needed to transfer programs and data into
memory and the results of computations back out to the user. Test instructions are used
to test the value of a data word or the status of a computation. Branch instructions are
then used to branch to a different set of instructions depending on the decision made.

We will examine the various types of instructions in greater detail later in
this chapter.

Number of Addresses

One of the traditional ways of describing processor architecture is in terms of the
number of addresses contained in each instruction. This dimension has become less
significant with the increasing complexity of processor design. Nevertheless, it is
useful at this point to draw and analyze this distinction.

What is the maximum number of addresses one might need in an instruction?
Evidently, arithmetic and logic instructions will require the most operands. Virtually
all arithmetic and logic operations are either unary (one source operand) or binary
(two source operands). Thus, we would need a maximum of two addresses to refer-
ence source operands. The result of an operation must be stored, suggesting a third
address, which defines a destination operand. Finally, after completion of an instruc-
tion, the next instruction must be fetched, and its address is needed.

This line of reasoning suggests that an instruction could plausibly be required
to contain four address references: two source operands, one destination operand,
and the address of the next instruction. In practice, four-address instructions are
extremely rare. Most instructions have one, two, or three operand addresses, with the
address of the next instruction being implicit (obtained from the program counter).

Figure 10.3 compares typical one-, two-, and three-address instructions that
could be used to compute Y = (A — B)/[C + (D X E)]. With three addresses,
each instruction specifies two source operand locations and a destination operand
location. Because we choose not to alter the value of any of the operand locations, a
temporary location, T, is used to store some intermediate results. Note that there are
four instructions and that the original expression had five operands.

Three-address instruction formats are not common because they require a
relatively long instruction format to hold the three address references. With two-
address instructions, and for binary operations, one address must do double duty as
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Instruction Comment
SUB Y,ALB Y«A-B
MPY T,D,E Te«DXE
ADD T, T,C Te«T+C
DIV Y, Y, T YeY+T
(a) Three-address instructions Instruction Cominent
LOAD D ACeD

] MPY E AC« ACXE
Instruction Comment ADD C ACe AC+C
MOVE Y, A YeA STOR Y Y « AC
SUB Y,B YeY-B LOAD A AC« A
MOVE T,D T«D SUB B ACe«~AC-B
MPY T.E T<TXE DIV Y AC—AC+Y
ADD T,C TeT+C STOR Y Y « AC
DIV Y,T YeY=T

(c) One-address instructions
A-B
C + (D X E)

(b) Two-address instructions

Figure 10.3 Programs to Execute Y =

both an operand and a result. Thus, the instruction SUB Y, B carries out the calcu-
lation Y — B and stores the result in Y. The two-address format reduces the space
requirement but also introduces some awkwardness. To avoid altering the value of
an operand, a MOVE instruction is used to move one of the values to a result or
temporary location before performing the operation. Our sample program expands
to six instructions.

Simpler yet is the one-address instruction. For this to work, a second address
must be implicit. This was common in earlier machines, with the implied address being
a processor register known as the accumulator (AC). The accumulator contains one of
the operands and is used to store the result. In our example, eight instructions are
needed to accomplish the task.

It is, in fact, possible to make do with zero addresses for some instructions. Zero-
address instructions are applicable to a special memory organization, called a stack.
A stack is a last-in-first-out set of locations. The stack is in a known location and, often,
at least the top two elements are in processor registers. Thus, zero-address instructions
would reference the top two stack elements. Stacks are described in Appendix 10A.
Their use is explored further later in this chapter and in Chapter 11.

Table 10.1 summarizes the interpretations to be placed on instructions with
zero, one, two, or three addresses. In each case in the table, it is assumed that the
address of the next instruction is implicit, and that one operation with two source
operands and one result operand is to be performed.

The number of addresses per instruction is a basic design decision. Fewer
addresses per instruction result in instructions that are more primitive, requiring a
less complex processor. It also results in instructions of shorter length. On the other
hand, programs contain more total instructions, which in general results in longer
execution times and longer, more complex programs. Also, there is an important
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Table 16.1 Utilization of Instruction Addresses (Nonbranching Instructions)

3 OPA,B,C © A<BOPC
: OPAB A<AOPB
1 oPA !
0 oP

AC = accumulator

T = top of stack

(T — 1) = second element of stack
A.B.C = memory or register locations

threshold between one-address and multiple-address instructions. With one-
address instructions, the programmer generally has available only one general-
purpose register, the accumulator. With multiple-address instructions, it is common
to have multiple general-purpose registers. This allows some operations to be per-
formed solely on registers. Because register references are faster than memory ref-
erences, this speeds up execution. For reasons of flexibility and ability to use
multiple registers, most contemporary machines employ a mixture of two- and
three-address instructions.

The design trade-offs involved in choosing the number of addresses per
instruction are complicated by other factors. There is the issue of whether an address
references a memory location or a register. Because there are fewer registers, fewer
bits are needed for a register reference. Also, as we shall see in the next chapter, a
machine may offer a variety of addressing modes, and the specification of mode takes
one or more bits. The result is that most processor designs involve a variety of
instruction formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is
instruction set design. The design of an instruction set is very complex because it
affects so many aspects of the computer system. The instruction set defines many of
the functions performed by the processor and thus has a significant effect on the
implementation of the processor. The instruction set is the programmer’s means of
controlling the processor. Thus, programmer requirements must be considered in
designing the instruction set.

It may surprise you to know that some of the most fundamental issues relating
to the design of instruction sets remain in dispute. Indeed, in recent years, the level
of disagreement concerning these fundamentals has actually grown. The most
important of these fundamental design issues include the following:

 Operation repertoire: How many and which operations to provide, and how
complex operations should be
« Data types: The various types of data upon which operations are performed

« Instruction format: Instruction length (in bits), number of addresses, size of
various fields, and so on
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* Registers: Number of processor registers that can be referenced by instructions,
and their use

* Addressing: The mode or modes by which the address of an operand is specified

These issues are highly interrelated and must be considered together in designing
an instruction set. This book, of course, must consider them in some sequence, but an
attempt is made to show the interrelationships.

Because of the importance of this topic, much of Part Three is devoted to
instruction set design. Following this overview section, this chapter examines data types
and operation repertoire. Chapter 11 examines addressing modes (which includes a
consideration of registers) and instruction formats. Chapter 13 examines the reduced
instruction set computer (RISC). RISC architecture calls into question many of the
instruction set design decisions traditionally made in commercial computers.

10.2 TYPES OF OPERANDS

Machine instructions operate on data. The most important general categories of
data are

* Addresses
¢ Numbers

¢ Characters
* Logical data

We shall see, in discussing addressing modes in Chapter 11, that addresses are, in
fact, a form of data. In many cases, some calculation must be performed on the
operand reference in an instruction to determine the main or virtual memory address.
In this context, addresses can be considered to be unsigned integers.

Other common data types are numbers, characters, and logical data, and each
of these is briefly examined in this section. Beyond that, some machines define spe-
cialized data types or data structures. For example, there may be machine operations
that operate directly on a list or a string of characters.

Numbers

All machine languages include numeric data types. Even in nonnumeric data pro-
cessing, there is a need for numbers to act as counters, field widths, and so forth. An
important distinction between numbers used in ordinary mathematics and numbers
stored in a computer is that the latter are limited. This is true in two senses. First,
there is a limit to the magnitude of numbers representable on a machine and second,
in the case of floating-point numbers, a limit to their precision. Thus, the programmer
is faced with understanding the consequences of rounding, overflow, and underflow.
Three types of numerical data are common in computers:

* Integer or fixed point
* Floating point
¢ Decimal



10.2 /TYPES OF OPERANDS 343

We examined the first two in some detail in Chapter 9. It remains to say a few words
about decimal numbers.

Although all internal computer operations are binary in nature, the human
users of the system deal with decimal numbers, Thus, there is a necessity to
convert from decimal to binary on input and from binary to decimal on output.
For applications in which there is a great deal of I/O and comparatively little,
comparatively simple computation, it is preferable to store and operate on the
numbers in decimal form. The most common representation for this purpose is
packed decimal.!

With packed decimal, each decimal digit is represented by a 4-bit code, in the
obvious way, with two digits stored per byte. Thus,0 = 0000, 1 = 0001,...,8 = 1000,
and 9 = 1001. Note that this is a rather inefficient code because only 10 of 16 possible
4-bit values are used. To form numbers, 4-bit codes are strung together, usually in
multiples of 8 bits. Thus, the code for 246 is 0000 0010 0100 0110. This code is clearly
less compact than a straight binary representation, but it avoids the conversion over-
head. Negative numbers can be represented by including a 4-bit sign digit at either the
left or right end of a string of packed decimal digits. For example, the code 1111 might
stand for the minus sign.

Many machines provide arithmetic instructions for performing operations
directly on packed decimal numbers. The algorithms are quite similar to those
described in Section 9.3 but must take into account the decimal carry operation.

Characters

A common form of data is text or character strings. While textual data are most
convenient for human beings, they cannot, in character form, be easily stored or
transmitted by data processing and communications systems. Such systems are
designed for binary data. Thus, a number of codes have been devised by which
characters are represented by a sequence of bits. Perhaps the earliest common
example of this is the Morse code. Today, the most commonly used character
code in the International Reference Alphabet (IRA), referred to in the United
States as the American Standard Code for Information Interchange (ASCII; see
Table 7.1). Each character in this code is represented by a unique 7-bit pattern;
thus, 128 different characters can be represented. This is a larger number than is
necessary to represent printable characters, and some of the patterns represent
control characters. Some of these control characters have to do with controlling
the printing of characters on a page. Others are concerned with communications
procedures. IRA-encoded characters are almost always stored and transmitted
using 8 bits per character. The eighth bit may be set to 0 or used as a parity bit for
error detection. In the latter case, the bit is set such that the total number of
binary 1s in each octet is always odd (odd parity) or always even (even parity).

"Textbooks often refer to this as binary coded decimal (BCD). Strictly speaking, BCD refers to the
encoding of each decimal digit by a unique 4-bit sequence. Packed decimal refers to the storage of BCD-
encoded digits using one byte for each two digits.
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Note in Table 7.1 that for the IRA bit pattern 011XXXX, the digits O through 9
are represented by their binary equivalents, 0000 through 1001, in the rightmost 4 bits.
This is the same code as packed decimal. This facilitates conversion between 7-bit IRA
and 4-bit packed decimal representation.

Another code used to encode characters is the Extended Binary Coded Decimal
Interchange Code (EBCDIC). EBCDIC is used on IBM mainframes. It is an 8-bit code.
As with IRA, EBCDIC is compatible with packed decimal. In the case of EBCDIC, the
codes 11110000 through 11111001 represent the digits O through 9.

Logical Data

Normally, each word or other addressable unit (byte, halfword, and so on) is treated
as a single unit of data. It is sometimes useful, however, to consider an n-bit unit as
consisting of n 1-bit items of data, each item having the value 0 or 1. When data are
viewed this way, they are considered to be logical data.

There are two advantages to the bit-oriented view. First, we may sometimes
wish to store an array of Boolean or binary data items, in which each item can take
on only the values 1 (true) and 0 (false). With logical data, memory can be used most
efficiently for this storage. Second, there are occasions when we wish to manipulate
the bits of a data item. For example, if floating-point operations are implemented in
software, we need to be able to shift significant bits in some operations. Another
example: To convert from IRA to packed decimal, we need to extract the rightmost
4 bits of each byte.

Note that, in the preceding examples, the same data are treated sometimes as
logical and other times as numerical or text. The “type” of a unit of data is determined
by the operation being performed on it. While this is not normally the case in high-
level languages, it is almost always the case with machine language.

10.3 PENTIUM AND POWERPC DATA TYPES

Pentiun Daca Types

The Pentium can deal with data types of 8 (byte), 16 (word), 32 (doubleword), and
64 (quadword) bits in length. To allow maximum flexibility in data structures and
efficient memory utilization, words need not be aligned at even-numbered addresses;
doublewords need not be aligned at addresses evenly divisible by 4; and quadwords
need not be aligned at addresses evenly divisible by 8. However, when data are accessed
across a 32-bit bus, data transfers take place in units of doublewords, beginning at
addresses divisible by 4. The processor converts the request for misaligned values into a
sequence of requests for the bus transfer. As with all of the Intel 80x86 machines, the
Pentium uses the little-endian style; that is, the least significant byte is stored in the
lowest address (see Appendix 10B for a discussion of endianness).

The byte, word, doubleword, and quadword are referred to as general data
types. In addition, the Pentium supports an impressive array of specific data types that
are recognized and operated on by particular instructions. Table 10.2 summarizes
these types.
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Table 10.2 Pentium Data Types

General Byte, word (16 bits), doubléword (32 bits), and qmdwotd o4 hm)
" locations with arbitrary binary contents. ,
Integer A signed binary value contained in a byte, word, or mma,m
: twos complement representation.
Ordinal : : An unsigned integer contained in a byte, word, or doubleword.

Unpacked binary coded . A representation of a BCD dtglt in the range 0 through 9, with omdigt
decimal (BCD) m each byte.

Packed BCD Packed byte representation of two BCD' digits; vahxc in the rangc
0to99.
Near pointer A 32-bit effective address that represents the offset within awgmmt.

Used for all pointers in a nonsegmented memmy and for references -
within a segment in a segmented memory. :
Bit field ) Aeoxuguouswquenceofbnsmmmemtmo{mhhm
* considered as an independent unit: A bit string can begin at any bit.
position of any byte and can contain up to 2% — 1bits.
Byte string A contiguous sequence of bytes, words, or doublewotds,mt&hingfm .
. zero to 2% — 1 bytes. 0
Floating point ) See Figure 104.

Figure 10.4 illustrates the Pentium numerical data types. The signed integers are
in twos complement representation and may be 16, 32, or 64 bits long. The floating-
point type actually refers to a set of types that are used by the floating-point unit and
operated on by floating-point instructions. The three floating-point representations
conform to the IEEE 754 standard.

PowerPC Data Types

The PowerPC can deal with data types of 8 (byte), 16 (halfword), 32 (word), and
64 (doubleword) bits in length. Some instructions require that memory operands
be aligned on a 32-bit boundary. In general, however, alignment is not required. One
interesting feature of the PowerPC is that it can use either little-endian or big-endian
style; that is, the least significant byte is stored in the lowest or highest address (see
Appendix 10B for a discussion of endianness).

The byte, halfword, word, and doubleword are general data types. The proces-
sor interprets the contents of a given item of data depending on the instruction. The
fixed-point processor recognizes the following data types:

 Unsigned byte: Can be used for logical or integer arithmetic operations. It is
loaded from memory into a general register by zero extending on the left to
the full register size.

* Unsigned halfword: As for unsigned byte, but for 16-bit quantities.
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[:] Byte unsigned integer
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':I Word unsigned integer
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] Doubleword unsigned integer

31 0
, Quadword unsigned integer
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twos comp l:l Byte signed integer
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Figure 10.4 Pentium Numeric Data Formats

* Signed halfword: Used for arithmetic operations; loaded into memory by sign
extending on the left to full register size (i.e., the sign bit is replicated in all
vacant positions).

* Unsigned word: Used for logical operations and as an address pointer.
* Signed word: Used for arithmetic operations.

* Unsigned doubleword: Used as an address pointer.

* Byte string: From 0 to 128 bytes in length.

In addition, the PowerPC supports the single- and double-precision floating-
point data types defined in IEEE 754.
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10.4 TYPES OF OPERATIONS

The number of different opcodes varies widely from machine to machine. However,
the same general types of operations are found on all machines. A useful and typical
categorization is the following:

Table 10.3 Common Instruction Set Operations

Data transfer
Arithmetic
Logical
Conversion

/0

System control
Transfer of control

Table 10.3 (based on [HAYE98]) lists common instruction types in each
category. This section provides a brief survey of these various types of operations,
together with a brief discussion of the actions taken by the processor to execute a
particular type of operation (summarized in Table 10.4). The latter topic is exam-
ined in more detail in Chapter 12.

Type Operation Name Description
o Move (transfer) Transfer word or block from source to
destination '
Store Transfer word from processor to memory
: : Load (fetch) Transfer word from memory to processor
Data Transfer Exchange Swap contents of source and destination
e : Clear (reset) Transfer word of Os to destination
Set Transfer word of 1s to destination
Push Transfer word from source to top of stack
- Pop Transfer word from top of stack to destination
| Add Compute sum of two operands
Subtract Compute difference of two operands
Multiply Compute product of two operands
.Divide Compute quotient of two operands
' Ati,thmctic‘ Absolute Replace operand by its absolute value
Negate Change sign of operand
Increment Add 1 to operand
Decrement Subtract 1 from operand

(continued)
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Table 10.3 Continued

Type Operation Name Description
AND Perform logical AND
OR Perform logical OR
NOT (complement) Perform logical NOT
Exclusive-OR Perform logical XOR
Test Test specified condition; set flag(s) based on
) outcome
Logical Compare Make logical or arithmetic comparison of two or
more operands; set flag(s) based on outcome
Set Control Variables Class of instructions to set controls for protection
purposes, interrupt handling, timer control, etc.
Shift Left (right) shift operand, introducing constants
at end
Rotate Left (right) shift operand, with wraparound end
Jump (branch) Unconditional transfer; load PC with specified address
Jump Conditional Test specified condition; either load PC with
specified address or do nothing, based on
condition
Jump to Subroutine Place current program control information in known
location; jump to specified address ,
Return Replace contents of PC and other register from known
location
Execute Fetch operand from specified location and execute
Transfer of Control as instruction; do not modify PC
Skip Increment PC to skip next instruction
Skip Conditional Test specified condition; either skip or do nothing
' : based on condition
Halt Stop program execution :
Wait (hold) Stop program execution; test specified condition
repeatedly; resume execution when condition is
satisfied .
No operation No operation is performed, but program execution is
continued
Input (read) Transfer data from specified 1/O port or device to
destination (e.g., main memory or processor register)
Output (write) Transfer data from specified source to 1/O port or
Input/Output device .
Start I/O Transfer instructions to 1/O processor to initiate VO
operation
Test 1/0 Transfer status information from /O system to
specified destination
Translate Translate values in a section of memory based on
- a table of correspondences
Conversion Convert Convert the contents of a word from one form to
another (e.g., packed decimal to binary)
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Table 10.4 CPU Actions for Various Types of Operations

Transfer data from one location to another
If memory is involved:

" Determine memory addms '
Data fi «
wa Transfes " Perform vxrtuabto»actuaiwmnmory addma

Check cache

Initiate memory readlvmte g
1 May involve data transfer before awhx aﬁer
- Arithmetic Perform functionin ALU -
Set condition codes and ﬂags

Logical Same as arithmetic . : s e
Similar to arithmetic and logical. hfay mm’hm spmiw m 1

conversion: i
- Update program counter. For submutme uw:ehm,mw pmmem
Transfer of Control passing and linkage ;

Issue command to /O module. . .-~ = 5 ;
If memory-mapped /O, determme Wmmm

Conversion

o

Data Transfer

The most fundamental type of machine instruction is the data transfer instruction.
The data transfer instruction must specify several things. First, the location of
the source and destination operands must be specified. Each location could be
memory, a register, or the top of the stack. Second, the length of data to be trans-
ferred must be indicated. Third, as with all instructions with operands, the mode of
addressing for each operand must be specified. This latter point is discussed in
Chapter 11.

The choice of data transfer instructions to include in an instruction set exem-
plifies the kinds of trade-offs the designer must make. For example, the general
location (memory or register) of -an operand can be indicated in either the spec-
ification of the opcode or the operand. Table 10.5 shows examples of the most
common IBM S/390 data transfer instructions. Note that there are variants to
indicate the amount of data to be transferred (8, 16, 32, or 64 bits). Also, there are
different instructions for register to register, register to memory, and memory to
register transfers. In contrast, the VAX has a move (MOV) instruction with vari-
ants for different amounts of data to be moved, but it specifies whether an operand
is register or memory as part of the operand. The VAX approach is somewhat
easier for the programmer, who has fewer mnemonics to deal with. However, it is
also somewhat less compact than the IBM S/390 approach because the location
(register versus memory) of each operand must be specified separately in the
instruction. We will return to this distinction when we discuss instruction formats,
in the next chapter.

In terms of processor action, data transfer operations are perhaps the simplest
type. If both source and destination are registers, then the processor simply causes
data to be transferred from one register to another; this is an operation internal to
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Table 10.5  Examples of IBM $/390 Data Transfer Operations

Operation | Number of Bits
. Mnemonic Name Transferred Description

Lo .. | Load : 2 Transfer from memory to register
| LH = . | Load Halfword 16 Transfer from memory to register
LR | Load ’ 32 Transfer from register to register

LER 1 Load (Short) 2 Transfer from floating-point register to
L i e floating-point register :
iR | Load (Short) 32 Transfer from memory to floating-point
bt Gl S e register _
LDR o} Load (Lg Transfer from floating-point register to
8 B floating-point register
LD Transfer from memory to floating-point
SR register
ST - 32 Transfer from register to memory
"*s"m 16 Transfer from register to memory

C- 8 - Transfer from register to memory
STE Store (Short) 32 Transfer from floating-point register to
memory
STD Store (Long) 64 Transfer from floating-point register to
, memory :

the processor. If one or both operands are in memory, then the processor must per-
form some or all of the following actions:

Ll

Chapter

2.
address.

[

4.

Arithmetic

11).

- Calculate the memory address, based on the address mode (discussed in
If the address refers to virtual memory, translate from virtual to actual memory

. Determine whether the addressed item is in cache.
If not, issue a command to the memory module.

Most machines provide the basic arithmetic operations of add, subtract, multiply, and
divide. These are invariably provided for signed integer (fixed-point) numbers. Often
they are also provided for floating-point and packed decimal numbers.

Other possible operations include a variety of single-operand instructions;

for example,

* Absolute: Take the absolute value of the operand.

* Negate: Negate the operand.

* Increment: Add 1 to the operand.

* Decrement: Subtract 1 from the operand.




